File Manager

Current Path : /usr/share/rspamd/plugins/
Upload File :
Current File : //usr/share/rspamd/plugins/neural.lua

--[[
Copyright (c) 2016, Vsevolod Stakhov <vsevolod@highsecure.ru>

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
]]--


if confighelp then
  return
end

local fun = require "fun"
local lua_redis = require "lua_redis"
local lua_util = require "lua_util"
local lua_verdict = require "lua_verdict"
local neural_common = require "plugins/neural"
local rspamd_kann = require "rspamd_kann"
local rspamd_logger = require "rspamd_logger"
local rspamd_tensor = require "rspamd_tensor"
local rspamd_text = require "rspamd_text"
local rspamd_util = require "rspamd_util"
local ts = require("tableshape").types

local N = "neural"

local settings = neural_common.settings

local redis_profile_schema = ts.shape{
  digest = ts.string,
  symbols = ts.array_of(ts.string),
  version = ts.number,
  redis_key = ts.string,
  distance = ts.number:is_optional(),
}

local has_blas = rspamd_tensor.has_blas()
local text_cookie = rspamd_text.cookie

-- Creates and stores ANN profile in Redis
local function new_ann_profile(task, rule, set, version)
  local ann_key = neural_common.new_ann_key(rule, set, version, settings)

  local profile = {
    symbols = set.symbols,
    redis_key = ann_key,
    version = version,
    digest = set.digest,
    distance = 0 -- Since we are using our own profile
  }

  local ucl = require "ucl"
  local profile_serialized = ucl.to_format(profile, 'json-compact', true)

  local function add_cb(err, _)
    if err then
      rspamd_logger.errx(task, 'cannot store ANN profile for %s:%s at %s : %s',
          rule.prefix, set.name, profile.redis_key, err)
    else
      rspamd_logger.infox(task, 'created new ANN profile for %s:%s, data stored at prefix %s',
          rule.prefix, set.name, profile.redis_key)
    end
  end

  lua_redis.redis_make_request(task,
      rule.redis,
      nil,
      true, -- is write
      add_cb, --callback
      'ZADD', -- command
      {set.prefix, tostring(rspamd_util.get_time()), profile_serialized}
  )

  return profile
end


-- ANN filter function, used to insert scores based on the existing symbols
local function ann_scores_filter(task)

  for _,rule in pairs(settings.rules) do
    local sid = task:get_settings_id() or -1
    local ann
    local profile

    local set = neural_common.get_rule_settings(task, rule)
    if set then
      if set.ann then
        ann = set.ann.ann
        profile = set.ann
      else
        lua_util.debugm(N, task, 'no ann loaded for %s:%s',
            rule.prefix, set.name)
      end
    else
      lua_util.debugm(N, task, 'no ann defined in %s for settings id %s',
          rule.prefix, sid)
    end

    if ann then
      local vec = neural_common.result_to_vector(task, profile)

      local score
      local out = ann:apply1(vec, set.ann.pca)
      score = out[1]

      local symscore = string.format('%.3f', score)
      lua_util.debugm(N, task, '%s:%s:%s ann score: %s',
          rule.prefix, set.name, set.ann.version, symscore)

      if score > 0 then
        local result = score
        task:insert_result(rule.symbol_spam, result, symscore)
      else
        local result = -(score)
        task:insert_result(rule.symbol_ham, result, symscore)
      end
    end
  end
end

local function ann_push_task_result(rule, task, verdict, score, set)
  local train_opts = rule.train
  local learn_spam, learn_ham
  local skip_reason = 'unknown'

  if not train_opts.store_pool_only and train_opts.autotrain then
    if train_opts.spam_score then
      learn_spam = score >= train_opts.spam_score

      if not learn_spam then
        skip_reason = string.format('score < spam_score: %f < %f',
            score, train_opts.spam_score)
      end
    else
      learn_spam = verdict == 'spam' or verdict == 'junk'

      if not learn_spam then
        skip_reason = string.format('verdict: %s',
            verdict)
      end
    end

    if train_opts.ham_score then
      learn_ham = score <= train_opts.ham_score
      if not learn_ham then
        skip_reason = string.format('score > ham_score: %f > %f',
            score, train_opts.ham_score)
      end
    else
      learn_ham = verdict == 'ham'

      if not learn_ham then
        skip_reason = string.format('verdict: %s',
            verdict)
      end
    end
  else
    -- Train by request header
    local hdr = task:get_request_header('ANN-Train')

    if hdr then
      if hdr:lower() == 'spam' then
        learn_spam = true
      elseif hdr:lower() == 'ham' then
        learn_ham = true
      else
        skip_reason = 'no explicit header'
      end
    elseif train_opts.store_pool_only then
      local ucl = require "ucl"
      learn_ham = false
      learn_spam = false

      -- Explicitly store tokens in cache
      local vec = neural_common.result_to_vector(task, set)
      task:cache_set(rule.prefix .. '_neural_vec_mpack', ucl.to_format(vec, 'msgpack'))
      task:cache_set(rule.prefix .. '_neural_profile_digest', set.digest)
      skip_reason = 'store_pool_only has been set'
    end
  end


  if learn_spam or learn_ham then
    local learn_type
    if learn_spam then learn_type = 'spam' else learn_type = 'ham' end

    local function vectors_len_cb(err, data)
      if not err and type(data) == 'table' then
        local nspam,nham = data[1],data[2]

        if neural_common.can_push_train_vector(rule, task, learn_type, nspam, nham) then
          local vec = neural_common.result_to_vector(task, set)

          local str = rspamd_util.zstd_compress(table.concat(vec, ';'))
          local target_key = set.ann.redis_key .. '_' .. learn_type

          local function learn_vec_cb(_err)
            if _err then
              rspamd_logger.errx(task, 'cannot store train vector for %s:%s: %s',
                  rule.prefix, set.name, _err)
            else
              lua_util.debugm(N, task,
                  "add train data for ANN rule " ..
                      "%s:%s, save %s vector of %s elts in %s key; %s bytes compressed",
                  rule.prefix, set.name, learn_type, #vec, target_key, #str)
            end
          end

          lua_redis.redis_make_request(task,
              rule.redis,
              nil,
              true, -- is write
              learn_vec_cb, --callback
              'LPUSH', -- command
              { target_key, str } -- arguments
          )
        else
          lua_util.debugm(N, task,
              "do not add %s train data for ANN rule " ..
                  "%s:%s",
              learn_type, rule.prefix, set.name)
        end
      else
        if err then
          rspamd_logger.errx(task, 'cannot check if we can train %s:%s : %s',
              rule.prefix, set.name, err)
        elseif type(data) == 'string' then
          -- nil return value
          rspamd_logger.infox(task, "cannot learn %s ANN %s:%s; redis_key: %s: locked for learning: %s",
              learn_type, rule.prefix, set.name, set.ann.redis_key, data)
        else
          rspamd_logger.errx(task, 'cannot check if we can train %s:%s : type of Redis key %s is %s, expected table' ..
              'please remove this key from Redis manually if you perform upgrade from the previous version',
              rule.prefix, set.name, set.ann.redis_key, type(data))
        end
      end
    end

    -- Check if we can learn
    if set.can_store_vectors then
      if not set.ann then
        -- Need to create or load a profile corresponding to the current configuration
        set.ann = new_ann_profile(task, rule, set, 0)
        lua_util.debugm(N, task,
            'requested new profile for %s, set.ann is missing',
            set.name)
      end

      lua_redis.exec_redis_script(neural_common.redis_script_id.vectors_len,
          {task = task, is_write = false},
          vectors_len_cb,
          {
            set.ann.redis_key,
          })
    else
      lua_util.debugm(N, task,
          'do not push data: train condition not satisfied; reason: not checked existing ANNs')
    end
  else
    lua_util.debugm(N, task,
        'do not push data to key %s: train condition not satisfied; reason: %s',
        (set.ann or {}).redis_key,
        skip_reason)
  end
end

--- Offline training logic

-- Utility to extract and split saved training vectors to a table of tables
local function process_training_vectors(data)
  return fun.totable(fun.map(function(tok)
    local _,str = rspamd_util.zstd_decompress(tok)
    return fun.totable(fun.map(tonumber, lua_util.str_split(tostring(str), ';')))
  end, data))
end

-- This function does the following:
-- * Tries to lock ANN
-- * Loads spam and ham vectors
-- * Spawn learning process
local function do_train_ann(worker, ev_base, rule, set, ann_key)
  local spam_elts = {}
  local ham_elts = {}

  local function redis_ham_cb(err, data)
    if err or type(data) ~= 'table' then
      rspamd_logger.errx(rspamd_config, 'cannot get ham tokens for ANN %s from redis: %s',
        ann_key, err)
      -- Unlock on error
      lua_redis.redis_make_request_taskless(ev_base,
        rspamd_config,
        rule.redis,
        nil,
        true, -- is write
          neural_common.gen_unlock_cb(rule, set, ann_key), --callback
        'HDEL', -- command
        {ann_key, 'lock'}
      )
    else
      -- Decompress and convert to numbers each training vector
      ham_elts = process_training_vectors(data)
      neural_common.spawn_train({worker = worker, ev_base = ev_base,
          rule = rule, set = set, ann_key = ann_key, ham_vec = ham_elts,
          spam_vec = spam_elts})
    end
  end

  -- Spam vectors received
  local function redis_spam_cb(err, data)
    if err or type(data) ~= 'table' then
      rspamd_logger.errx(rspamd_config, 'cannot get spam tokens for ANN %s from redis: %s',
        ann_key, err)
      -- Unlock ANN on error
      lua_redis.redis_make_request_taskless(ev_base,
        rspamd_config,
        rule.redis,
        nil,
        true, -- is write
          neural_common.gen_unlock_cb(rule, set, ann_key), --callback
        'HDEL', -- command
        {ann_key, 'lock'}
      )
    else
      -- Decompress and convert to numbers each training vector
      spam_elts = process_training_vectors(data)
      -- Now get ham vectors...
      lua_redis.redis_make_request_taskless(ev_base,
        rspamd_config,
        rule.redis,
        nil,
        false, -- is write
        redis_ham_cb, --callback
        'LRANGE', -- command
        {ann_key .. '_ham', '0', '-1'}
      )
    end
  end

  local function redis_lock_cb(err, data)
    if err then
      rspamd_logger.errx(rspamd_config, 'cannot call lock script for ANN %s from redis: %s',
        ann_key, err)
    elseif type(data) == 'number' and data == 1 then
      -- ANN is locked, so we can extract SPAM and HAM vectors and spawn learning
      lua_redis.redis_make_request_taskless(ev_base,
        rspamd_config,
        rule.redis,
        nil,
        false, -- is write
        redis_spam_cb, --callback
        'LRANGE', -- command
        {ann_key .. '_spam', '0', '-1'}
      )

      rspamd_logger.infox(rspamd_config, 'lock ANN %s:%s (key name %s) for learning',
        rule.prefix, set.name, ann_key)
    else
      local lock_tm = tonumber(data[1])
      rspamd_logger.infox(rspamd_config, 'do not learn ANN %s:%s (key name %s), ' ..
          'locked by another host %s at %s', rule.prefix, set.name, ann_key,
          data[2], os.date('%c', lock_tm))
    end
  end

  -- Check if we are already learning this network
  if set.learning_spawned then
    rspamd_logger.infox(rspamd_config, 'do not learn ANN %s, already learning another ANN',
        ann_key)
    return
  end

  -- Call Redis script that tries to acquire a lock
  -- This script returns either a boolean or a pair {'lock_time', 'hostname'} when
  -- ANN is locked by another host (or a process, meh)
  lua_redis.exec_redis_script(neural_common.redis_script_id.maybe_lock,
    {ev_base = ev_base, is_write = true},
    redis_lock_cb,
      {
        ann_key,
        tostring(os.time()),
        tostring(math.max(10.0, rule.watch_interval * 2)),
        rspamd_util.get_hostname()
    })
end

-- This function loads new ann from Redis
-- This is based on `profile` attribute.
-- ANN is loaded from `profile.redis_key`
-- Rank of `profile` key is also increased, unfortunately, it means that we need to
-- serialize profile one more time and set its rank to the current time
-- set.ann fields are set according to Redis data received
local function load_new_ann(rule, ev_base, set, profile, min_diff)
  local ann_key = profile.redis_key

  local function data_cb(err, data)
    if err then
      rspamd_logger.errx(rspamd_config, 'cannot get ANN data from key: %s; %s',
          ann_key, err)
    else
      if type(data) == 'table' then
        if type(data[1]) == 'userdata' and data[1].cookie == text_cookie then
          local _err,ann_data = rspamd_util.zstd_decompress(data[1])
          local ann

          if _err or not ann_data then
            rspamd_logger.errx(rspamd_config, 'cannot decompress ANN for %s from Redis key %s: %s',
                rule.prefix .. ':' .. set.name, ann_key, _err)
            return
          else
            ann = rspamd_kann.load(ann_data)

            if ann then
              set.ann = {
                digest = profile.digest,
                version = profile.version,
                symbols = profile.symbols,
                distance = min_diff,
                redis_key = profile.redis_key
              }

              local ucl = require "ucl"
              local profile_serialized = ucl.to_format(profile, 'json-compact', true)
              set.ann.ann = ann -- To avoid serialization

              local function rank_cb(_, _)
                -- TODO: maybe add some logging
              end
              -- Also update rank for the loaded ANN to avoid removal
              lua_redis.redis_make_request_taskless(ev_base,
                  rspamd_config,
                  rule.redis,
                  nil,
                  true, -- is write
                  rank_cb, --callback
                  'ZADD', -- command
                  {set.prefix, tostring(rspamd_util.get_time()), profile_serialized}
              )
              rspamd_logger.infox(rspamd_config,
                  'loaded ANN for %s:%s from %s; %s bytes compressed; version=%s',
                  rule.prefix, set.name, ann_key, #data[1], profile.version)
            else
              rspamd_logger.errx(rspamd_config,
                  'cannot unpack/deserialise ANN for %s:%s from Redis key %s',
                  rule.prefix, set.name, ann_key)
            end
          end
        else
          lua_util.debugm(N, rspamd_config, 'missing ANN for %s:%s in Redis key %s',
              rule.prefix, set.name, ann_key)
        end
        if set.ann and set.ann.ann and type(data[2]) == 'userdata' and data[2].cookie == text_cookie then
          -- PCA table
          local _err,pca_data = rspamd_util.zstd_decompress(data[2])
          if pca_data then
            if rule.max_inputs then
              -- We can use PCA
              set.ann.pca = rspamd_tensor.load(pca_data)
              rspamd_logger.infox(rspamd_config,
                  'loaded PCA for ANN for %s:%s from %s; %s bytes compressed; version=%s',
                  rule.prefix, set.name, ann_key, #data[2], profile.version)
            else
              -- no need in pca, why is it there?
              rspamd_logger.warnx(rspamd_config,
                  'extra PCA for ANN for %s:%s from Redis key %s: no max inputs defined',
                  rule.prefix, set.name, ann_key)
            end
          else
            -- pca can be missing merely if we have no max_inputs
            if rule.max_inputs then
              rspamd_logger.errx(rspamd_config, 'cannot unpack/deserialise ANN for %s:%s from Redis key %s: no PCA: %s',
                  rule.prefix, set.name, ann_key, _err)
              set.ann.ann = nil
            else
              -- It is okay
              set.ann.pca = nil
            end
          end
        end
      else
        lua_util.debugm(N, rspamd_config, 'no ANN key for %s:%s in Redis key %s',
            rule.prefix, set.name, ann_key)
      end
    end
  end
  lua_redis.redis_make_request_taskless(ev_base,
      rspamd_config,
      rule.redis,
      nil,
      false, -- is write
      data_cb, --callback
      'HMGET', -- command
      {ann_key, 'ann', 'pca'}, -- arguments
      {opaque_data = true}
  )
end

-- Used to check an element in Redis serialized as JSON
-- for some specific rule + some specific setting
-- This function tries to load more fresh or more specific ANNs in lieu of
-- the existing ones.
-- Use this function to load ANNs as `callback` parameter for `check_anns` function
local function process_existing_ann(_, ev_base, rule, set, profiles)
  local my_symbols = set.symbols
  local min_diff = math.huge
  local sel_elt

  for _,elt in fun.iter(profiles) do
    if elt and elt.symbols then
      local dist = lua_util.distance_sorted(elt.symbols, my_symbols)
      -- Check distance
      if dist < #my_symbols * .3 then
        if dist < min_diff then
          min_diff = dist
          sel_elt = elt
        end
      end
    end
  end

  if sel_elt then
    -- We can load element from ANN
    if set.ann then
      -- We have an existing ANN, probably the same...
      if set.ann.digest == sel_elt.digest then
        -- Same ANN, check version
        if set.ann.version < sel_elt.version then
          -- Load new ann
          rspamd_logger.infox(rspamd_config, 'ann %s is changed, ' ..
              'our version = %s, remote version = %s',
              rule.prefix .. ':' .. set.name,
              set.ann.version,
              sel_elt.version)
          load_new_ann(rule, ev_base, set, sel_elt, min_diff)
        else
          lua_util.debugm(N, rspamd_config, 'ann %s is not changed, ' ..
              'our version = %s, remote version = %s',
              rule.prefix .. ':' .. set.name,
              set.ann.version,
              sel_elt.version)
        end
      else
        -- We have some different ANN, so we need to compare distance
        if set.ann.distance > min_diff then
          -- Load more specific ANN
          rspamd_logger.infox(rspamd_config, 'more specific ann is available for %s, ' ..
              'our distance = %s, remote distance = %s',
              rule.prefix .. ':' .. set.name,
              set.ann.distance,
              min_diff)
          load_new_ann(rule, ev_base, set, sel_elt, min_diff)
        else
          lua_util.debugm(N, rspamd_config, 'ann %s is not changed or less specific, ' ..
              'our distance = %s, remote distance = %s',
              rule.prefix .. ':' .. set.name,
              set.ann.distance,
              min_diff)
        end
      end
    else
      -- We have no ANN, load new one
      load_new_ann(rule, ev_base, set, sel_elt, min_diff)
    end
  end
end


-- This function checks all profiles and selects if we can train our
-- ANN. By our we mean that it has exactly the same symbols in profile.
-- Use this function to train ANN as `callback` parameter for `check_anns` function
local function maybe_train_existing_ann(worker, ev_base, rule, set, profiles)
  local my_symbols = set.symbols
  local sel_elt
  local lens = {
    spam = 0,
    ham = 0,
  }

  for _,elt in fun.iter(profiles) do
    if elt and elt.symbols then
      local dist = lua_util.distance_sorted(elt.symbols, my_symbols)
      -- Check distance
      if dist == 0 then
        sel_elt = elt
        break
      end
    end
  end

  if sel_elt then
    -- We have our ANN and that's train vectors, check if we can learn
    local ann_key = sel_elt.redis_key

    lua_util.debugm(N, rspamd_config, "check if ANN %s needs to be trained",
        ann_key)

    -- Create continuation closure
    local redis_len_cb_gen = function(cont_cb, what, is_final)
      return function(err, data)
        if err then
          rspamd_logger.errx(rspamd_config,
              'cannot get ANN %s trains %s from redis: %s', what, ann_key, err)
        elseif data and type(data) == 'number' or type(data) == 'string' then
          local ntrains = tonumber(data) or 0
          lens[what] = ntrains
          if is_final then
            -- Ensure that we have the following:
            -- one class has reached max_trains
            -- other class(es) are at least as full as classes_bias
            -- e.g. if classes_bias = 0.25 and we have 10 max_trains then
            -- one class must have 10 or more trains whilst another should have
            -- at least (10 * (1 - 0.25)) = 8 trains

            local max_len = math.max(lua_util.unpack(lua_util.values(lens)))
            local min_len = math.min(lua_util.unpack(lua_util.values(lens)))

            if rule.train.learn_type == 'balanced' then
              local len_bias_check_pred = function(_, l)
                return l >= rule.train.max_trains * (1.0 - rule.train.classes_bias)
              end
              if max_len >= rule.train.max_trains and fun.all(len_bias_check_pred, lens) then
                rspamd_logger.debugm(N, rspamd_config,
                    'can start ANN %s learn as it has %s learn vectors; %s required, after checking %s vectors',
                    ann_key, lens, rule.train.max_trains, what)
                cont_cb()
              else
                rspamd_logger.debugm(N, rspamd_config,
                    'cannot learn ANN %s now: there are not enough %s learn vectors (has %s vectors; %s required)',
                    ann_key, what, lens, rule.train.max_trains)
              end
            else
              -- Probabilistic mode, just ensure that at least one vector is okay
              if min_len > 0 and max_len >= rule.train.max_trains then
                rspamd_logger.debugm(N, rspamd_config,
                    'can start ANN %s learn as it has %s learn vectors; %s required, after checking %s vectors',
                    ann_key, lens, rule.train.max_trains, what)
                cont_cb()
              else
                rspamd_logger.debugm(N, rspamd_config,
                    'cannot learn ANN %s now: there are not enough %s learn vectors (has %s vectors; %s required)',
                    ann_key, what, lens, rule.train.max_trains)
              end
            end

          else
            rspamd_logger.debugm(N, rspamd_config,
                'checked %s vectors in ANN %s: %s vectors; %s required, need to check other class vectors',
                what, ann_key, ntrains, rule.train.max_trains)
            cont_cb()
          end
        end
      end

    end

    local function initiate_train()
      rspamd_logger.infox(rspamd_config,
          'need to learn ANN %s after %s required learn vectors',
          ann_key, lens)
      do_train_ann(worker, ev_base, rule, set, ann_key)
    end

    -- Spam vector is OK, check ham vector length
    local function check_ham_len()
      lua_redis.redis_make_request_taskless(ev_base,
          rspamd_config,
          rule.redis,
          nil,
          false, -- is write
          redis_len_cb_gen(initiate_train, 'ham', true), --callback
          'LLEN', -- command
          {ann_key .. '_ham'}
      )
    end

    lua_redis.redis_make_request_taskless(ev_base,
        rspamd_config,
        rule.redis,
        nil,
        false, -- is write
        redis_len_cb_gen(check_ham_len, 'spam', false), --callback
        'LLEN', -- command
        {ann_key .. '_spam'}
    )
  end
end

-- Used to deserialise ANN element from a list
local function load_ann_profile(element)
  local ucl = require "ucl"

  local parser = ucl.parser()
  local res,ucl_err = parser:parse_string(element)
  if not res then
    rspamd_logger.warnx(rspamd_config, 'cannot parse ANN from redis: %s',
        ucl_err)
    return nil
  else
    local profile = parser:get_object()
    local checked,schema_err = redis_profile_schema:transform(profile)
    if not checked then
      rspamd_logger.errx(rspamd_config, "cannot parse profile schema: %s", schema_err)

      return nil
    end
    return checked
  end
end

-- Function to check or load ANNs from Redis
local function check_anns(worker, cfg, ev_base, rule, process_callback, what)
  for _,set in pairs(rule.settings) do
    local function members_cb(err, data)
      if err then
        rspamd_logger.errx(cfg, 'cannot get ANNs list from redis: %s',
            err)
        set.can_store_vectors = true
      elseif type(data) == 'table' then
        lua_util.debugm(N, cfg, '%s: process element %s:%s',
            what, rule.prefix, set.name)
        process_callback(worker, ev_base, rule, set, fun.map(load_ann_profile, data))
        set.can_store_vectors = true
      end
    end

    if type(set) == 'table' then
      -- Extract all profiles for some specific settings id
      -- Get the last `max_profiles` recently used
      -- Select the most appropriate to our profile but it should not differ by more
      -- than 30% of symbols
      lua_redis.redis_make_request_taskless(ev_base,
          cfg,
          rule.redis,
          nil,
          false, -- is write
          members_cb, --callback
          'ZREVRANGE', -- command
          {set.prefix, '0', tostring(settings.max_profiles)} -- arguments
      )
    end
  end -- Cycle over all settings

  return rule.watch_interval
end

-- Function to clean up old ANNs
local function cleanup_anns(rule, cfg, ev_base)
  for _,set in pairs(rule.settings) do
    local function invalidate_cb(err, data)
      if err then
        rspamd_logger.errx(cfg, 'cannot exec invalidate script in redis: %s',
            err)
      elseif type(data) == 'table' then
        for _,expired in ipairs(data) do
          local profile = load_ann_profile(expired)
          rspamd_logger.infox(cfg, 'invalidated ANN for %s; redis key: %s; version=%s',
              rule.prefix .. ':' .. set.name,
              profile.redis_key,
              profile.version)
        end
      end
    end

    if type(set) == 'table' then
      lua_redis.exec_redis_script(neural_common.redis_script_id.maybe_invalidate,
          {ev_base = ev_base, is_write = true},
          invalidate_cb,
          {set.prefix, tostring(settings.max_profiles)})
    end
  end
end

local function ann_push_vector(task)
  if task:has_flag('skip') then
    lua_util.debugm(N, task, 'do not push data for skipped task')
    return
  end
  if not settings.allow_local and lua_util.is_rspamc_or_controller(task) then
    lua_util.debugm(N, task, 'do not push data for manual scan')
    return
  end

  local verdict,score = lua_verdict.get_specific_verdict(N, task)

  if verdict == 'passthrough' then
    lua_util.debugm(N, task, 'ignore task as its verdict is %s(%s)',
        verdict, score)

    return
  end

  if score ~= score then
    lua_util.debugm(N, task, 'ignore task as its score is nan (%s verdict)',
        verdict)

    return
  end

  for _,rule in pairs(settings.rules) do
    local set = neural_common.get_rule_settings(task, rule)

    if set then
      ann_push_task_result(rule, task, verdict, score, set)
    else
      lua_util.debugm(N, task, 'settings not found in rule %s', rule.prefix)
    end

  end
end


-- Initialization part
if not (neural_common.module_config and type(neural_common.module_config) == 'table')
    or not neural_common.redis_params then
  rspamd_logger.infox(rspamd_config, 'Module is unconfigured')
  lua_util.disable_module(N, "redis")
  return
end

local rules = neural_common.module_config['rules']

if not rules then
  -- Use legacy configuration
  rules = {}
  rules['default'] = neural_common.module_config
end

local id = rspamd_config:register_symbol({
  name = 'NEURAL_CHECK',
  type = 'postfilter,callback',
  flags = 'nostat',
  priority = 6,
  callback = ann_scores_filter
})

neural_common.settings.rules = {} -- Reset unless validated further in the cycle

if settings.blacklisted_symbols and settings.blacklisted_symbols[1] then
  -- Transform to hash for simplicity
  settings.blacklisted_symbols = lua_util.list_to_hash(settings.blacklisted_symbols)
end

-- Check all rules
for k,r in pairs(rules) do
  local rule_elt = lua_util.override_defaults(neural_common.default_options, r)
  rule_elt['redis'] = neural_common.redis_params
  rule_elt['anns'] = {} -- Store ANNs here

  if not rule_elt.prefix then
    rule_elt.prefix = k
  end
  if not rule_elt.name then
    rule_elt.name = k
  end
  if rule_elt.train.max_train and not rule_elt.train.max_trains then
    rule_elt.train.max_trains = rule_elt.train.max_train
  end

  if not rule_elt.profile then rule_elt.profile = {} end

  if rule_elt.max_inputs and not has_blas then
    rspamd_logger.errx('cannot set max inputs to %s as BLAS is not compiled in',
        rule_elt.name, rule_elt.max_inputs)
    rule_elt.max_inputs = nil
  end

  rspamd_logger.infox(rspamd_config, "register ann rule %s", k)
  settings.rules[k] = rule_elt
  rspamd_config:set_metric_symbol({
    name = rule_elt.symbol_spam,
    score = 0.0,
    description = 'Neural network SPAM',
    group = 'neural'
  })
  rspamd_config:register_symbol({
    name = rule_elt.symbol_spam,
    type = 'virtual',
    flags = 'nostat',
    parent = id
  })

  rspamd_config:set_metric_symbol({
    name = rule_elt.symbol_ham,
    score = -0.0,
    description = 'Neural network HAM',
    group = 'neural'
  })
  rspamd_config:register_symbol({
    name = rule_elt.symbol_ham,
    type = 'virtual',
    flags = 'nostat',
    parent = id
  })
end

rspamd_config:register_symbol({
  name = 'NEURAL_LEARN',
  type = 'idempotent,callback',
  flags = 'nostat,explicit_disable',
  priority = 5,
  callback = ann_push_vector
})

-- We also need to deal with settings
rspamd_config:add_post_init(neural_common.process_rules_settings)

-- Add training scripts
for _,rule in pairs(settings.rules) do
  neural_common.load_scripts(rule.redis)
  -- This function will check ANNs in Redis when a worker is loaded
  rspamd_config:add_on_load(function(cfg, ev_base, worker)
    if worker:is_scanner() then
      rspamd_config:add_periodic(ev_base, 0.0,
          function(_, _)
            return check_anns(worker, cfg, ev_base, rule, process_existing_ann,
                'try_load_ann')
          end)
    end

    if worker:is_primary_controller() then
      -- We also want to train neural nets when they have enough data
      rspamd_config:add_periodic(ev_base, 0.0,
          function(_, _)
            -- Clean old ANNs
            cleanup_anns(rule, cfg, ev_base)
            return check_anns(worker, cfg, ev_base, rule, maybe_train_existing_ann,
                'try_train_ann')
          end)
    end
  end)
end

File Manager Version 1.0, Coded By Lucas
Email: hehe@yahoo.com