File Manager
# TSort implements topological sorting using Tarjan's algorithm for strongly
# connected components.
#
# TSort is designed to be able to be used with any object which can be
# interpreted as a directed graph.
#
# TSort requires two methods to interpret an object as a graph, tsort_each_node
# and tsort_each_child.
#
# * tsort_each_node is used to iterate for all nodes over a graph.
# * tsort_each_child is used to iterate for child nodes of a given node.
#
#
# The equality of nodes are defined by eql? and hash since TSort uses Hash
# internally.
#
# ## A Simple Example
#
# The following example demonstrates how to mix the TSort module into an
# existing class (in this case, Hash). Here, we're treating each key in the hash
# as a node in the graph, and so we simply alias the required #tsort_each_node
# method to Hash's #each_key method. For each key in the hash, the associated
# value is an array of the node's child nodes. This choice in turn leads to our
# implementation of the required #tsort_each_child method, which fetches the
# array of child nodes and then iterates over that array using the user-supplied
# block.
#
# require 'tsort'
#
# class Hash
# include TSort
# alias tsort_each_node each_key
# def tsort_each_child(node, &block)
# fetch(node).each(&block)
# end
# end
#
# {1=>[2, 3], 2=>[3], 3=>[], 4=>[]}.tsort
# #=> [3, 2, 1, 4]
#
# {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}.strongly_connected_components
# #=> [[4], [2, 3], [1]]
#
# ## A More Realistic Example
#
# A very simple `make' like tool can be implemented as follows:
#
# require 'tsort'
#
# class Make
# def initialize
# @dep = {}
# @dep.default = []
# end
#
# def rule(outputs, inputs=[], &block)
# triple = [outputs, inputs, block]
# outputs.each {|f| @dep[f] = [triple]}
# @dep[triple] = inputs
# end
#
# def build(target)
# each_strongly_connected_component_from(target) {|ns|
# if ns.length != 1
# fs = ns.delete_if {|n| Array === n}
# raise TSort::Cyclic.new("cyclic dependencies: #{fs.join ', '}")
# end
# n = ns.first
# if Array === n
# outputs, inputs, block = n
# inputs_time = inputs.map {|f| File.mtime f}.max
# begin
# outputs_time = outputs.map {|f| File.mtime f}.min
# rescue Errno::ENOENT
# outputs_time = nil
# end
# if outputs_time == nil ||
# inputs_time != nil && outputs_time <= inputs_time
# sleep 1 if inputs_time != nil && inputs_time.to_i == Time.now.to_i
# block.call
# end
# end
# }
# end
#
# def tsort_each_child(node, &block)
# @dep[node].each(&block)
# end
# include TSort
# end
#
# def command(arg)
# print arg, "\n"
# system arg
# end
#
# m = Make.new
# m.rule(%w[t1]) { command 'date > t1' }
# m.rule(%w[t2]) { command 'date > t2' }
# m.rule(%w[t3]) { command 'date > t3' }
# m.rule(%w[t4], %w[t1 t3]) { command 'cat t1 t3 > t4' }
# m.rule(%w[t5], %w[t4 t2]) { command 'cat t4 t2 > t5' }
# m.build('t5')
#
# ## Bugs
#
# * 'tsort.rb' is wrong name because this library uses Tarjan's algorithm for
# strongly connected components. Although 'strongly_connected_components.rb'
# is correct but too long.
#
#
# ## References
#
# 1. Tarjan, "Depth First Search and Linear Graph Algorithms",
#
#
# *SIAM Journal on Computing*, Vol. 1, No. 2, pp. 146-160, June 1972.
module TSort[Node] : TSort::_Sortable[Node]
# The iterator version of the TSort.strongly_connected_components method.
#
# The graph is represented by *each_node* and *each_child*. *each_node* should
# have `call` method which yields for each node in the graph. *each_child*
# should have `call` method which takes a node argument and yields for each
# child node.
#
# g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
# each_node = lambda {|&b| g.each_key(&b) }
# each_child = lambda {|n, &b| g[n].each(&b) }
# TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc }
# #=> [4]
# # [2]
# # [3]
# # [1]
#
# g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
# each_node = lambda {|&b| g.each_key(&b) }
# each_child = lambda {|n, &b| g[n].each(&b) }
# TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc }
# #=> [4]
# # [2, 3]
# # [1]
#
def self.each_strongly_connected_component: [T] (_EachNode[T] each_node, _EachChild[T] each_child) { (Array[T]) -> void } -> void
| [T] (_EachNode[T] each_node, _EachChild[T] each_child) -> Enumerator[Array[T], void]
| [T] (^() { (T) -> void } -> void each_node, ^(T) { (T) -> void } -> void each_child) { (Array[T]) -> void } -> void
| [T] (^() { (T) -> void } -> void each_node, ^(T) { (T) -> void } -> void each_child) -> Enumerator[Array[T], void]
# Iterates over strongly connected components in a graph. The graph is
# represented by *node* and *each_child*.
#
# *node* is the first node. *each_child* should have `call` method which takes a
# node argument and yields for each child node.
#
# Return value is unspecified.
#
# #TSort.each_strongly_connected_component_from is a class method and it doesn't
# need a class to represent a graph which includes TSort.
#
# graph = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
# each_child = lambda {|n, &b| graph[n].each(&b) }
# TSort.each_strongly_connected_component_from(1, each_child) {|scc|
# p scc
# }
# #=> [4]
# # [2, 3]
# # [1]
#
def self.each_strongly_connected_component_from: [T] (T node, _EachChild[T] each_child, ?untyped id_map, ?untyped stack) { (Array[T]) -> void } -> void
| [T] (T node, _EachChild[T] each_child, ?untyped id_map, ?untyped stack) -> Enumerator[Array[T], void]
| [T] (T node, ^(T) { (T) -> void } -> void each_child, ?untyped id_map, ?untyped stack) { (Array[T]) -> void } -> void
| [T] (T node, ^(T) { (T) -> void } -> void each_child, ?untyped id_map, ?untyped stack) -> Enumerator[Array[T], void]
# Returns strongly connected components as an array of arrays of nodes. The
# array is sorted from children to parents. Each elements of the array
# represents a strongly connected component.
#
# The graph is represented by *each_node* and *each_child*. *each_node* should
# have `call` method which yields for each node in the graph. *each_child*
# should have `call` method which takes a node argument and yields for each
# child node.
#
# g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
# each_node = lambda {|&b| g.each_key(&b) }
# each_child = lambda {|n, &b| g[n].each(&b) }
# p TSort.strongly_connected_components(each_node, each_child)
# #=> [[4], [2], [3], [1]]
#
# g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
# each_node = lambda {|&b| g.each_key(&b) }
# each_child = lambda {|n, &b| g[n].each(&b) }
# p TSort.strongly_connected_components(each_node, each_child)
# #=> [[4], [2, 3], [1]]
#
def self.strongly_connected_components: [T] (_EachNode[T] each_node, _EachChild[T] each_child) -> Array[Array[T]]
| [T] (^() { (T) -> void } -> void each_node, ^(T) { (T) -> void } -> void each_child) -> Array[Array[T]]
# Returns a topologically sorted array of nodes. The array is sorted from
# children to parents, i.e. the first element has no child and the last node has
# no parent.
#
# The graph is represented by *each_node* and *each_child*. *each_node* should
# have `call` method which yields for each node in the graph. *each_child*
# should have `call` method which takes a node argument and yields for each
# child node.
#
# If there is a cycle, TSort::Cyclic is raised.
#
# g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
# each_node = lambda {|&b| g.each_key(&b) }
# each_child = lambda {|n, &b| g[n].each(&b) }
# p TSort.tsort(each_node, each_child) #=> [4, 2, 3, 1]
#
# g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
# each_node = lambda {|&b| g.each_key(&b) }
# each_child = lambda {|n, &b| g[n].each(&b) }
# p TSort.tsort(each_node, each_child) # raises TSort::Cyclic
#
def self.tsort: [T] (_EachNode[T] each_node, _EachChild[T] each_child) -> Array[T]
| [T] (^() { (T) -> void } -> void each_node, ^(T) { (T) -> void } -> void each_child) -> Array[T]
# The iterator version of the TSort.tsort method.
#
# The graph is represented by *each_node* and *each_child*. *each_node* should
# have `call` method which yields for each node in the graph. *each_child*
# should have `call` method which takes a node argument and yields for each
# child node.
#
# g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
# each_node = lambda {|&b| g.each_key(&b) }
# each_child = lambda {|n, &b| g[n].each(&b) }
# TSort.tsort_each(each_node, each_child) {|n| p n }
# #=> 4
# # 2
# # 3
# # 1
#
def self.tsort_each: [T] (_EachNode[T] each_node, _EachChild[T] each_child) { (T) -> void } -> void
| [T] (_EachNode[T] each_node, _EachChild[T] each_child) -> Enumerator[T, void]
| [T] (^() { (T) -> void } -> void each_node, ^(T) { (T) -> void } -> void each_child) { (T) -> void } -> void
| [T] (^() { (T) -> void } -> void each_node, ^(T) { (T) -> void } -> void each_child) -> Enumerator[T, void]
# The iterator version of the #strongly_connected_components method.
# *`obj*.each_strongly_connected_component` is similar to
# *`obj*.strongly_connected_components.each`, but modification of *obj* during
# the iteration may lead to unexpected results.
#
# #each_strongly_connected_component returns `nil`.
#
# class G
# include TSort
# def initialize(g)
# @g = g
# end
# def tsort_each_child(n, &b) @g[n].each(&b) end
# def tsort_each_node(&b) @g.each_key(&b) end
# end
#
# graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
# graph.each_strongly_connected_component {|scc| p scc }
# #=> [4]
# # [2]
# # [3]
# # [1]
#
# graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
# graph.each_strongly_connected_component {|scc| p scc }
# #=> [4]
# # [2, 3]
# # [1]
#
def each_strongly_connected_component: () { (Array[Node]) -> void } -> void
| () -> Enumerator[Array[Node], void]
# Iterates over strongly connected component in the subgraph reachable from
# *node*.
#
# Return value is unspecified.
#
# #each_strongly_connected_component_from doesn't call #tsort_each_node.
#
# class G
# include TSort
# def initialize(g)
# @g = g
# end
# def tsort_each_child(n, &b) @g[n].each(&b) end
# def tsort_each_node(&b) @g.each_key(&b) end
# end
#
# graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
# graph.each_strongly_connected_component_from(2) {|scc| p scc }
# #=> [4]
# # [2]
#
# graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
# graph.each_strongly_connected_component_from(2) {|scc| p scc }
# #=> [4]
# # [2, 3]
#
def each_strongly_connected_component_from: (Node, ?untyped id_map, ?untyped stack) { (Array[Node]) -> void } -> void
| (Node, ?untyped id_map, ?untyped stack) -> Enumerator[Array[Node], void]
# Returns strongly connected components as an array of arrays of nodes. The
# array is sorted from children to parents. Each elements of the array
# represents a strongly connected component.
#
# class G
# include TSort
# def initialize(g)
# @g = g
# end
# def tsort_each_child(n, &b) @g[n].each(&b) end
# def tsort_each_node(&b) @g.each_key(&b) end
# end
#
# graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
# p graph.strongly_connected_components #=> [[4], [2], [3], [1]]
#
# graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
# p graph.strongly_connected_components #=> [[4], [2, 3], [1]]
#
def strongly_connected_components: () -> Array[Array[Node]]
# Returns a topologically sorted array of nodes. The array is sorted from
# children to parents, i.e. the first element has no child and the last node has
# no parent.
#
# If there is a cycle, TSort::Cyclic is raised.
#
# class G
# include TSort
# def initialize(g)
# @g = g
# end
# def tsort_each_child(n, &b) @g[n].each(&b) end
# def tsort_each_node(&b) @g.each_key(&b) end
# end
#
# graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
# p graph.tsort #=> [4, 2, 3, 1]
#
# graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
# p graph.tsort # raises TSort::Cyclic
#
def tsort: () -> Array[Node]
# The iterator version of the #tsort method. *`obj*.tsort_each` is similar to
# *`obj*.tsort.each`, but modification of *obj* during the iteration may lead to
# unexpected results.
#
# #tsort_each returns `nil`. If there is a cycle, TSort::Cyclic is raised.
#
# class G
# include TSort
# def initialize(g)
# @g = g
# end
# def tsort_each_child(n, &b) @g[n].each(&b) end
# def tsort_each_node(&b) @g.each_key(&b) end
# end
#
# graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
# graph.tsort_each {|n| p n }
# #=> 4
# # 2
# # 3
# # 1
#
def tsort_each: () { (Node) -> void } -> void
| () -> Enumerator[Node, void]
end
File Manager Version 1.0, Coded By Lucas
Email: hehe@yahoo.com