File Manager
# BigDecimal provides arbitrary-precision floating point decimal arithmetic.
#
# ## Introduction
#
# Ruby provides built-in support for arbitrary precision integer arithmetic.
#
# For example:
#
# 42**13 #=> 1265437718438866624512
#
# BigDecimal provides similar support for very large or very accurate floating
# point numbers.
#
# Decimal arithmetic is also useful for general calculation, because it provides
# the correct answers people expect--whereas normal binary floating point
# arithmetic often introduces subtle errors because of the conversion between
# base 10 and base 2.
#
# For example, try:
#
# sum = 0
# 10_000.times do
# sum = sum + 0.0001
# end
# print sum #=> 0.9999999999999062
#
# and contrast with the output from:
#
# require 'bigdecimal'
#
# sum = BigDecimal("0")
# 10_000.times do
# sum = sum + BigDecimal("0.0001")
# end
# print sum #=> 0.1E1
#
# Similarly:
#
# (BigDecimal("1.2") - BigDecimal("1.0")) == BigDecimal("0.2") #=> true
#
# (1.2 - 1.0) == 0.2 #=> false
#
# ## Special features of accurate decimal arithmetic
#
# Because BigDecimal is more accurate than normal binary floating point
# arithmetic, it requires some special values.
#
# ### Infinity
#
# BigDecimal sometimes needs to return infinity, for example if you divide a
# value by zero.
#
# BigDecimal("1.0") / BigDecimal("0.0") #=> Infinity
# BigDecimal("-1.0") / BigDecimal("0.0") #=> -Infinity
#
# You can represent infinite numbers to BigDecimal using the strings
# `'Infinity'`, `'+Infinity'` and `'-Infinity'` (case-sensitive)
#
# ### Not a Number
#
# When a computation results in an undefined value, the special value `NaN` (for
# 'not a number') is returned.
#
# Example:
#
# BigDecimal("0.0") / BigDecimal("0.0") #=> NaN
#
# You can also create undefined values.
#
# NaN is never considered to be the same as any other value, even NaN itself:
#
# n = BigDecimal('NaN')
# n == 0.0 #=> false
# n == n #=> false
#
# ### Positive and negative zero
#
# If a computation results in a value which is too small to be represented as a
# BigDecimal within the currently specified limits of precision, zero must be
# returned.
#
# If the value which is too small to be represented is negative, a BigDecimal
# value of negative zero is returned.
#
# BigDecimal("1.0") / BigDecimal("-Infinity") #=> -0.0
#
# If the value is positive, a value of positive zero is returned.
#
# BigDecimal("1.0") / BigDecimal("Infinity") #=> 0.0
#
# (See BigDecimal.mode for how to specify limits of precision.)
#
# Note that `-0.0` and `0.0` are considered to be the same for the purposes of
# comparison.
#
# Note also that in mathematics, there is no particular concept of negative or
# positive zero; true mathematical zero has no sign.
#
# ## bigdecimal/util
#
# When you require `bigdecimal/util`, the #to_d method will be available on
# BigDecimal and the native Integer, Float, Rational, and String classes:
#
# require 'bigdecimal/util'
#
# 42.to_d # => 0.42e2
# 0.5.to_d # => 0.5e0
# (2/3r).to_d(3) # => 0.667e0
# "0.5".to_d # => 0.5e0
#
# ## License
#
# Copyright (C) 2002 by Shigeo Kobayashi <shigeo@tinyforest.gr.jp>.
#
# BigDecimal is released under the Ruby and 2-clause BSD licenses. See
# LICENSE.txt for details.
#
# Maintained by mrkn <mrkn@mrkn.jp> and ruby-core members.
#
# Documented by zzak <zachary@zacharyscott.net>, mathew <meta@pobox.com>, and
# many other contributors.
#
class BigDecimal < Numeric
# Internal method used to provide marshalling support. See the Marshal module.
#
def self._load: (String) -> BigDecimal
# The BigDecimal.double_fig class method returns the number of digits a Float
# number is allowed to have. The result depends upon the CPU and OS in use.
#
def self.double_fig: () -> Integer
def self.interpret_loosely: (string) -> BigDecimal
# Limit the number of significant digits in newly created BigDecimal numbers to
# the specified value. Rounding is performed as necessary, as specified by
# BigDecimal.mode.
#
# A limit of 0, the default, means no upper limit.
#
# The limit specified by this method takes less priority over any limit
# specified to instance methods such as ceil, floor, truncate, or round.
#
def self.limit: (?Integer? digits) -> Integer
# Controls handling of arithmetic exceptions and rounding. If no value is
# supplied, the current value is returned.
#
# Six values of the mode parameter control the handling of arithmetic
# exceptions:
#
# BigDecimal::EXCEPTION_NaN BigDecimal::EXCEPTION_INFINITY
# BigDecimal::EXCEPTION_UNDERFLOW BigDecimal::EXCEPTION_OVERFLOW
# BigDecimal::EXCEPTION_ZERODIVIDE BigDecimal::EXCEPTION_ALL
#
# For each mode parameter above, if the value set is false, computation
# continues after an arithmetic exception of the appropriate type. When
# computation continues, results are as follows:
#
# EXCEPTION_NaN
# : NaN
# EXCEPTION_INFINITY
# : +Infinity or -Infinity
# EXCEPTION_UNDERFLOW
# : 0
# EXCEPTION_OVERFLOW
# : +Infinity or -Infinity
# EXCEPTION_ZERODIVIDE
# : +Infinity or -Infinity
#
#
# One value of the mode parameter controls the rounding of numeric values:
# BigDecimal::ROUND_MODE. The values it can take are:
#
# ROUND_UP, :up
# : round away from zero
# ROUND_DOWN, :down, :truncate
# : round towards zero (truncate)
# ROUND_HALF_UP, :half_up, :default
# : round towards the nearest neighbor, unless both neighbors are equidistant,
# in which case round away from zero. (default)
# ROUND_HALF_DOWN, :half_down
# : round towards the nearest neighbor, unless both neighbors are equidistant,
# in which case round towards zero.
# ROUND_HALF_EVEN, :half_even, :banker
# : round towards the nearest neighbor, unless both neighbors are equidistant,
# in which case round towards the even neighbor (Banker's rounding)
# ROUND_CEILING, :ceiling, :ceil
# : round towards positive infinity (ceil)
# ROUND_FLOOR, :floor
# : round towards negative infinity (floor)
#
def self.mode: (Integer mode, ?Integer? value) -> Integer?
# Execute the provided block, but preserve the exception mode
#
# BigDecimal.save_exception_mode do
# BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
# BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)
#
# BigDecimal(BigDecimal('Infinity'))
# BigDecimal(BigDecimal('-Infinity'))
# BigDecimal(BigDecimal('NaN'))
# end
#
# For use with the BigDecimal::EXCEPTION_*
#
# See BigDecimal.mode
#
def self.save_exception_mode: () { (?nil) -> void } -> void
# Execute the provided block, but preserve the precision limit
#
# BigDecimal.limit(100)
# puts BigDecimal.limit
# BigDecimal.save_limit do
# BigDecimal.limit(200)
# puts BigDecimal.limit
# end
# puts BigDecimal.limit
#
def self.save_limit: () { (?nil) -> void } -> void
# Execute the provided block, but preserve the rounding mode
#
# BigDecimal.save_rounding_mode do
# BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
# puts BigDecimal.mode(BigDecimal::ROUND_MODE)
# end
#
# For use with the BigDecimal::ROUND_*
#
# See BigDecimal.mode
#
def self.save_rounding_mode: () { (?nil) -> void } -> void
public
# Returns the modulus from dividing by b.
#
# See BigDecimal#divmod.
#
def %: (Numeric) -> BigDecimal
# Multiply by the specified value.
#
# e.g.
# c = a.mult(b,n)
# c = a * b
#
# digits
# : If specified and less than the number of significant digits of the result,
# the result is rounded to that number of digits, according to
# BigDecimal.mode.
#
def *: (Numeric) -> BigDecimal
# Returns the value raised to the power of n.
#
# See BigDecimal#power.
#
def **: (Numeric) -> BigDecimal
# Add the specified value.
#
# e.g.
# c = a.add(b,n)
# c = a + b
#
# digits
# : If specified and less than the number of significant digits of the result,
# the result is rounded to that number of digits, according to
# BigDecimal.mode.
#
def +: (Numeric) -> BigDecimal
# Return self.
#
# +BigDecimal('5') #=> 0.5e1
#
def +@: () -> BigDecimal
# Subtract the specified value.
#
# e.g.
# c = a - b
#
# The precision of the result value depends on the type of `b`.
#
# If `b` is a Float, the precision of the result is Float::DIG+1.
#
# If `b` is a BigDecimal, the precision of the result is `b`'s precision of
# internal representation from platform. So, it's return value is platform
# dependent.
#
def -: (Numeric) -> BigDecimal
# Return the negation of self.
#
# -BigDecimal('5') #=> -0.5e1
#
def -@: () -> BigDecimal
# Divide by the specified value.
#
# See BigDecimal#div.
#
def /: (Numeric) -> BigDecimal
# Returns true if a is less than b.
#
# Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).
#
def <: (Numeric) -> bool
# Returns true if a is less than or equal to b.
#
# Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).
#
def <=: (Numeric) -> bool
# The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.
#
def <=>: (Numeric) -> Integer?
# Tests for value equality; returns true if the values are equal.
#
# The == and === operators and the eql? method have the same implementation for
# BigDecimal.
#
# Values may be coerced to perform the comparison:
#
# BigDecimal('1.0') == 1.0 #=> true
#
def ==: (untyped) -> bool
# Tests for value equality; returns true if the values are equal.
#
# The == and === operators and the eql? method have the same implementation for
# BigDecimal.
#
# Values may be coerced to perform the comparison:
#
# BigDecimal('1.0') == 1.0 #=> true
#
def ===: (untyped) -> bool
# Returns true if a is greater than b.
#
# Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).
#
def >: (Numeric) -> bool
# Returns true if a is greater than or equal to b.
#
# Values may be coerced to perform the comparison (see ==, BigDecimal#coerce)
#
def >=: (Numeric) -> bool
# Method used to provide marshalling support.
#
# inf = BigDecimal('Infinity')
# #=> Infinity
# BigDecimal._load(inf._dump)
# #=> Infinity
#
# See the Marshal module.
#
def _dump: (?untyped) -> String
# Returns the absolute value, as a BigDecimal.
#
# BigDecimal('5').abs #=> 0.5e1
# BigDecimal('-3').abs #=> 0.3e1
#
def abs: () -> BigDecimal
# Add the specified value.
#
# e.g.
# c = a.add(b,n)
# c = a + b
#
# digits
# : If specified and less than the number of significant digits of the result,
# the result is rounded to that number of digits, according to
# BigDecimal.mode.
#
def add: (Numeric value, Integer digits) -> BigDecimal
# Return the smallest integer greater than or equal to the value, as a
# BigDecimal.
#
# BigDecimal('3.14159').ceil #=> 4
# BigDecimal('-9.1').ceil #=> -9
#
# If n is specified and positive, the fractional part of the result has no more
# than that many digits.
#
# If n is specified and negative, at least that many digits to the left of the
# decimal point will be 0 in the result.
#
# BigDecimal('3.14159').ceil(3) #=> 3.142
# BigDecimal('13345.234').ceil(-2) #=> 13400.0
#
def ceil: () -> Integer
| (int n) -> BigDecimal
def clone: () -> self
# The coerce method provides support for Ruby type coercion. It is not enabled
# by default.
#
# This means that binary operations like + * / or - can often be performed on a
# BigDecimal and an object of another type, if the other object can be coerced
# into a BigDecimal value.
#
# e.g.
# a = BigDecimal("1.0")
# b = a / 2.0 #=> 0.5
#
# Note that coercing a String to a BigDecimal is not supported by default; it
# requires a special compile-time option when building Ruby.
#
def coerce: (Numeric) -> [BigDecimal, BigDecimal]
# Divide by the specified value.
#
# digits
# : If specified and less than the number of significant digits of the result,
# the result is rounded to that number of digits, according to
# BigDecimal.mode.
#
# If digits is 0, the result is the same as for the / operator or #quo.
#
# If digits is not specified, the result is an integer, by analogy with
# Float#div; see also BigDecimal#divmod.
#
#
# Examples:
#
# a = BigDecimal("4")
# b = BigDecimal("3")
#
# a.div(b, 3) # => 0.133e1
#
# a.div(b, 0) # => 0.1333333333333333333e1
# a / b # => 0.1333333333333333333e1
# a.quo(b) # => 0.1333333333333333333e1
#
# a.div(b) # => 1
#
def div: (Numeric value) -> Integer
| (Numeric value, int digits) -> BigDecimal
# Divides by the specified value, and returns the quotient and modulus as
# BigDecimal numbers. The quotient is rounded towards negative infinity.
#
# For example:
#
# require 'bigdecimal'
#
# a = BigDecimal("42")
# b = BigDecimal("9")
#
# q, m = a.divmod(b)
#
# c = q * b + m
#
# a == c #=> true
#
# The quotient q is (a/b).floor, and the modulus is the amount that must be
# added to q * b to get a.
#
def divmod: (Numeric) -> [BigDecimal, BigDecimal]
def dup: () -> self
# Tests for value equality; returns true if the values are equal.
#
# The == and === operators and the eql? method have the same implementation for
# BigDecimal.
#
# Values may be coerced to perform the comparison:
#
# BigDecimal('1.0') == 1.0 #=> true
#
def eql?: (untyped) -> bool
# Returns the exponent of the BigDecimal number, as an Integer.
#
# If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of
# digits with no leading zeros, then n is the exponent.
#
def exponent: () -> Integer
# Returns True if the value is finite (not NaN or infinite).
#
def finite?: () -> bool
# Return the integer part of the number, as a BigDecimal.
#
def fix: () -> BigDecimal
# Return the largest integer less than or equal to the value, as a BigDecimal.
#
# BigDecimal('3.14159').floor #=> 3
# BigDecimal('-9.1').floor #=> -10
#
# If n is specified and positive, the fractional part of the result has no more
# than that many digits.
#
# If n is specified and negative, at least that many digits to the left of the
# decimal point will be 0 in the result.
#
# BigDecimal('3.14159').floor(3) #=> 3.141
# BigDecimal('13345.234').floor(-2) #=> 13300.0
#
def floor: () -> Integer
| (int n) -> BigDecimal
# Return the fractional part of the number, as a BigDecimal.
#
def frac: () -> BigDecimal
# Creates a hash for this BigDecimal.
#
# Two BigDecimals with equal sign, fractional part and exponent have the same
# hash.
#
def hash: () -> Integer
# Returns nil, -1, or +1 depending on whether the value is finite, -Infinity, or
# +Infinity.
#
def infinite?: () -> Integer?
# Returns a string representation of self.
#
# BigDecimal("1234.5678").inspect
# #=> "0.12345678e4"
#
def inspect: () -> String
# Returns the modulus from dividing by b.
#
# See BigDecimal#divmod.
#
def modulo: (Numeric b) -> BigDecimal
# Multiply by the specified value.
#
# e.g.
# c = a.mult(b,n)
# c = a * b
#
# digits
# : If specified and less than the number of significant digits of the result,
# the result is rounded to that number of digits, according to
# BigDecimal.mode.
#
def mult: (Numeric value, int digits) -> BigDecimal
# Returns True if the value is Not a Number.
#
def nan?: () -> bool
# Returns self if the value is non-zero, nil otherwise.
#
def nonzero?: () -> self?
# Returns the value raised to the power of n.
#
# Note that n must be an Integer.
#
# Also available as the operator **.
#
def power: (Numeric n, int prec) -> BigDecimal
# Returns an Array of two Integer values.
#
# The first value is the current number of significant digits in the BigDecimal.
# The second value is the maximum number of significant digits for the
# BigDecimal.
#
# BigDecimal('5').precs #=> [9, 18]
#
def precs: () -> [Integer, Integer]
# Divide by the specified value.
#
# See BigDecimal#div.
#
def quo: (Numeric) -> BigDecimal
# Returns the remainder from dividing by the value.
#
# x.remainder(y) means x-y*(x/y).truncate
#
def remainder: (Numeric) -> BigDecimal
# Round to the nearest integer (by default), returning the result as a
# BigDecimal if n is specified, or as an Integer if it isn't.
#
# BigDecimal('3.14159').round #=> 3
# BigDecimal('8.7').round #=> 9
# BigDecimal('-9.9').round #=> -10
#
# BigDecimal('3.14159').round(2).class.name #=> "BigDecimal"
# BigDecimal('3.14159').round.class.name #=> "Integer"
#
# If n is specified and positive, the fractional part of the result has no more
# than that many digits.
#
# If n is specified and negative, at least that many digits to the left of the
# decimal point will be 0 in the result.
#
# BigDecimal('3.14159').round(3) #=> 3.142
# BigDecimal('13345.234').round(-2) #=> 13300.0
#
# The value of the optional mode argument can be used to determine how rounding
# is performed; see BigDecimal.mode.
#
def round: () -> Integer
| (Numeric n, ?Integer mode) -> BigDecimal
# Returns the sign of the value.
#
# Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.
#
# The specific value returned indicates the type and sign of the BigDecimal, as
# follows:
#
# BigDecimal::SIGN_NaN
# : value is Not a Number
# BigDecimal::SIGN_POSITIVE_ZERO
# : value is +0
# BigDecimal::SIGN_NEGATIVE_ZERO
# : value is -0
# BigDecimal::SIGN_POSITIVE_INFINITE
# : value is +Infinity
# BigDecimal::SIGN_NEGATIVE_INFINITE
# : value is -Infinity
# BigDecimal::SIGN_POSITIVE_FINITE
# : value is positive
# BigDecimal::SIGN_NEGATIVE_FINITE
# : value is negative
#
def sign: () -> Integer
# Splits a BigDecimal number into four parts, returned as an array of values.
#
# The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if
# the BigDecimal is Not a Number.
#
# The second value is a string representing the significant digits of the
# BigDecimal, with no leading zeros.
#
# The third value is the base used for arithmetic (currently always 10) as an
# Integer.
#
# The fourth value is an Integer exponent.
#
# If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the
# string of significant digits with no leading zeros, and n is the exponent.
#
# From these values, you can translate a BigDecimal to a float as follows:
#
# sign, significant_digits, base, exponent = a.split
# f = sign * "0.#{significant_digits}".to_f * (base ** exponent)
#
# (Note that the to_f method is provided as a more convenient way to translate a
# BigDecimal to a Float.)
#
def split: () -> [Integer, String, Integer, Integer]
# Returns the square root of the value.
#
# Result has at least n significant digits.
#
def sqrt: (int n) -> BigDecimal
# Subtract the specified value.
#
# e.g.
# c = a.sub(b,n)
#
# digits
# : If specified and less than the number of significant digits of the result,
# the result is rounded to that number of digits, according to
# BigDecimal.mode.
#
def sub: (Numeric value, int digits) -> BigDecimal
# Returns a new Float object having approximately the same value as the
# BigDecimal number. Normal accuracy limits and built-in errors of binary Float
# arithmetic apply.
#
def to_f: () -> Float
# Returns the value as an Integer.
#
# If the BigDecimal is infinity or NaN, raises FloatDomainError.
#
def to_i: () -> Integer
# Returns the value as an Integer.
#
# If the BigDecimal is infinity or NaN, raises FloatDomainError.
#
def to_int: () -> Integer
# Converts a BigDecimal to a Rational.
#
def to_r: () -> Rational
# Converts the value to a string.
#
# The default format looks like 0.xxxxEnn.
#
# The optional parameter s consists of either an integer; or an optional '+' or
# ' ', followed by an optional number, followed by an optional 'E' or 'F'.
#
# If there is a '+' at the start of s, positive values are returned with a
# leading '+'.
#
# A space at the start of s returns positive values with a leading space.
#
# If s contains a number, a space is inserted after each group of that many
# fractional digits.
#
# If s ends with an 'E', engineering notation (0.xxxxEnn) is used.
#
# If s ends with an 'F', conventional floating point notation is used.
#
# Examples:
#
# BigDecimal('-123.45678901234567890').to_s('5F')
# #=> '-123.45678 90123 45678 9'
#
# BigDecimal('123.45678901234567890').to_s('+8F')
# #=> '+123.45678901 23456789'
#
# BigDecimal('123.45678901234567890').to_s(' F')
# #=> ' 123.4567890123456789'
#
def to_s: (?(String | int) s) -> String
# Truncate to the nearest integer (by default), returning the result as a
# BigDecimal.
#
# BigDecimal('3.14159').truncate #=> 3
# BigDecimal('8.7').truncate #=> 8
# BigDecimal('-9.9').truncate #=> -9
#
# If n is specified and positive, the fractional part of the result has no more
# than that many digits.
#
# If n is specified and negative, at least that many digits to the left of the
# decimal point will be 0 in the result.
#
# BigDecimal('3.14159').truncate(3) #=> 3.141
# BigDecimal('13345.234').truncate(-2) #=> 13300.0
#
def truncate: () -> Integer
| (int n) -> BigDecimal
# Returns True if the value is zero.
#
def zero?: () -> bool
private
def initialize_copy: (self) -> self
end
# Base value used in internal calculations. On a 32 bit system, BASE is 10000,
# indicating that calculation is done in groups of 4 digits. (If it were larger,
# BASE**2 wouldn't fit in 32 bits, so you couldn't guarantee that two groups
# could always be multiplied together without overflow.)
#
BigDecimal::BASE: Integer
# Determines whether overflow, underflow or zero divide result in an exception
# being thrown. See BigDecimal.mode.
#
BigDecimal::EXCEPTION_ALL: Integer
# Determines what happens when the result of a computation is infinity. See
# BigDecimal.mode.
#
BigDecimal::EXCEPTION_INFINITY: Integer
# Determines what happens when the result of a computation is not a number
# (NaN). See BigDecimal.mode.
#
BigDecimal::EXCEPTION_NaN: Integer
# Determines what happens when the result of a computation is an overflow (a
# result too large to be represented). See BigDecimal.mode.
#
BigDecimal::EXCEPTION_OVERFLOW: Integer
# Determines what happens when the result of a computation is an underflow (a
# result too small to be represented). See BigDecimal.mode.
#
BigDecimal::EXCEPTION_UNDERFLOW: Integer
# Determines what happens when a division by zero is performed. See
# BigDecimal.mode.
#
BigDecimal::EXCEPTION_ZERODIVIDE: Integer
# Positive infinity value.
#
BigDecimal::INFINITY: BigDecimal
# 'Not a Number' value.
#
BigDecimal::NAN: BigDecimal
# Round towards +Infinity. See BigDecimal.mode.
#
BigDecimal::ROUND_CEILING: Integer
# Indicates that values should be rounded towards zero. See BigDecimal.mode.
#
BigDecimal::ROUND_DOWN: Integer
# Round towards -Infinity. See BigDecimal.mode.
#
BigDecimal::ROUND_FLOOR: Integer
# Indicates that digits >= 6 should be rounded up, others rounded down. See
# BigDecimal.mode.
#
BigDecimal::ROUND_HALF_DOWN: Integer
# Round towards the even neighbor. See BigDecimal.mode.
#
BigDecimal::ROUND_HALF_EVEN: Integer
# Indicates that digits >= 5 should be rounded up, others rounded down. See
# BigDecimal.mode.
#
BigDecimal::ROUND_HALF_UP: Integer
# Determines what happens when a result must be rounded in order to fit in the
# appropriate number of significant digits. See BigDecimal.mode.
#
BigDecimal::ROUND_MODE: Integer
# Indicates that values should be rounded away from zero. See BigDecimal.mode.
#
BigDecimal::ROUND_UP: Integer
# Indicates that a value is negative and finite. See BigDecimal.sign.
#
BigDecimal::SIGN_NEGATIVE_FINITE: Integer
# Indicates that a value is negative and infinite. See BigDecimal.sign.
#
BigDecimal::SIGN_NEGATIVE_INFINITE: Integer
# Indicates that a value is -0. See BigDecimal.sign.
#
BigDecimal::SIGN_NEGATIVE_ZERO: Integer
# Indicates that a value is not a number. See BigDecimal.sign.
#
BigDecimal::SIGN_NaN: Integer
# Indicates that a value is positive and finite. See BigDecimal.sign.
#
BigDecimal::SIGN_POSITIVE_FINITE: Integer
# Indicates that a value is positive and infinite. See BigDecimal.sign.
#
BigDecimal::SIGN_POSITIVE_INFINITE: Integer
# Indicates that a value is +0. See BigDecimal.sign.
#
BigDecimal::SIGN_POSITIVE_ZERO: Integer
# The version of bigdecimal library
#
BigDecimal::VERSION: String
File Manager Version 1.0, Coded By Lucas
Email: hehe@yahoo.com