File Manager
# The Math module contains module functions for basic trigonometric and
# transcendental functions. See class Float for a list of constants that define
# Ruby's floating point accuracy.
#
# Domains and codomains are given only for real (not complex) numbers.
#
module Math
# Computes the arc cosine of `x`. Returns 0..PI.
#
# Domain: [-1, 1]
#
# Codomain: [0, PI]
#
# Math.acos(0) == Math::PI/2 #=> true
#
def self.acos: (Numeric x) -> Float
# Computes the inverse hyperbolic cosine of `x`.
#
# Domain: [1, INFINITY)
#
# Codomain: [0, INFINITY)
#
# Math.acosh(1) #=> 0.0
#
def self.acosh: (Numeric x) -> Float
# Computes the arc sine of `x`. Returns -PI/2..PI/2.
#
# Domain: [-1, -1]
#
# Codomain: [-PI/2, PI/2]
#
# Math.asin(1) == Math::PI/2 #=> true
#
def self.asin: (Numeric x) -> Float
# Computes the inverse hyperbolic sine of `x`.
#
# Domain: (-INFINITY, INFINITY)
#
# Codomain: (-INFINITY, INFINITY)
#
# Math.asinh(1) #=> 0.881373587019543
#
def self.asinh: (Numeric x) -> Float
# Computes the arc tangent of `x`. Returns -PI/2..PI/2.
#
# Domain: (-INFINITY, INFINITY)
#
# Codomain: (-PI/2, PI/2)
#
# Math.atan(0) #=> 0.0
#
def self.atan: (Numeric x) -> Float
# Computes the arc tangent given `y` and `x`. Returns a Float in the range
# -PI..PI. Return value is a angle in radians between the positive x-axis of
# cartesian plane and the point given by the coordinates (`x`, `y`) on it.
#
# Domain: (-INFINITY, INFINITY)
#
# Codomain: [-PI, PI]
#
# Math.atan2(-0.0, -1.0) #=> -3.141592653589793
# Math.atan2(-1.0, -1.0) #=> -2.356194490192345
# Math.atan2(-1.0, 0.0) #=> -1.5707963267948966
# Math.atan2(-1.0, 1.0) #=> -0.7853981633974483
# Math.atan2(-0.0, 1.0) #=> -0.0
# Math.atan2(0.0, 1.0) #=> 0.0
# Math.atan2(1.0, 1.0) #=> 0.7853981633974483
# Math.atan2(1.0, 0.0) #=> 1.5707963267948966
# Math.atan2(1.0, -1.0) #=> 2.356194490192345
# Math.atan2(0.0, -1.0) #=> 3.141592653589793
# Math.atan2(INFINITY, INFINITY) #=> 0.7853981633974483
# Math.atan2(INFINITY, -INFINITY) #=> 2.356194490192345
# Math.atan2(-INFINITY, INFINITY) #=> -0.7853981633974483
# Math.atan2(-INFINITY, -INFINITY) #=> -2.356194490192345
#
def self.atan2: (Numeric y, Numeric x) -> Float
# Computes the inverse hyperbolic tangent of `x`.
#
# Domain: (-1, 1)
#
# Codomain: (-INFINITY, INFINITY)
#
# Math.atanh(1) #=> Infinity
#
def self.atanh: (Numeric x) -> Float
# Returns the cube root of `x`.
#
# Domain: (-INFINITY, INFINITY)
#
# Codomain: (-INFINITY, INFINITY)
#
# -9.upto(9) {|x|
# p [x, Math.cbrt(x), Math.cbrt(x)**3]
# }
# #=> [-9, -2.0800838230519, -9.0]
# # [-8, -2.0, -8.0]
# # [-7, -1.91293118277239, -7.0]
# # [-6, -1.81712059283214, -6.0]
# # [-5, -1.7099759466767, -5.0]
# # [-4, -1.5874010519682, -4.0]
# # [-3, -1.44224957030741, -3.0]
# # [-2, -1.25992104989487, -2.0]
# # [-1, -1.0, -1.0]
# # [0, 0.0, 0.0]
# # [1, 1.0, 1.0]
# # [2, 1.25992104989487, 2.0]
# # [3, 1.44224957030741, 3.0]
# # [4, 1.5874010519682, 4.0]
# # [5, 1.7099759466767, 5.0]
# # [6, 1.81712059283214, 6.0]
# # [7, 1.91293118277239, 7.0]
# # [8, 2.0, 8.0]
# # [9, 2.0800838230519, 9.0]
#
def self.cbrt: (Numeric x) -> Float
# Computes the cosine of `x` (expressed in radians). Returns a Float in the
# range -1.0..1.0.
#
# Domain: (-INFINITY, INFINITY)
#
# Codomain: [-1, 1]
#
# Math.cos(Math::PI) #=> -1.0
#
def self.cos: (Numeric x) -> Float
# Computes the hyperbolic cosine of `x` (expressed in radians).
#
# Domain: (-INFINITY, INFINITY)
#
# Codomain: [1, INFINITY)
#
# Math.cosh(0) #=> 1.0
#
def self.cosh: (Numeric x) -> Float
# Calculates the error function of `x`.
#
# Domain: (-INFINITY, INFINITY)
#
# Codomain: (-1, 1)
#
# Math.erf(0) #=> 0.0
#
def self.erf: (Numeric x) -> Float
# Calculates the complementary error function of x.
#
# Domain: (-INFINITY, INFINITY)
#
# Codomain: (0, 2)
#
# Math.erfc(0) #=> 1.0
#
def self.erfc: (Numeric x) -> Float
# Returns e**x.
#
# Domain: (-INFINITY, INFINITY)
#
# Codomain: (0, INFINITY)
#
# Math.exp(0) #=> 1.0
# Math.exp(1) #=> 2.718281828459045
# Math.exp(1.5) #=> 4.4816890703380645
#
def self.exp: (Numeric x) -> Float
# Returns a two-element array containing the normalized fraction (a Float) and
# exponent (an Integer) of `x`.
#
# fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11]
# fraction * 2**exponent #=> 1234.0
#
def self.frexp: (Numeric x) -> [ Float, Integer ]
# Calculates the gamma function of x.
#
# Note that gamma(n) is same as fact(n-1) for integer n > 0. However gamma(n)
# returns float and can be an approximation.
#
# def fact(n) (1..n).inject(1) {|r,i| r*i } end
# 1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] }
# #=> [1, 1.0, 1]
# # [2, 1.0, 1]
# # [3, 2.0, 2]
# # [4, 6.0, 6]
# # [5, 24.0, 24]
# # [6, 120.0, 120]
# # [7, 720.0, 720]
# # [8, 5040.0, 5040]
# # [9, 40320.0, 40320]
# # [10, 362880.0, 362880]
# # [11, 3628800.0, 3628800]
# # [12, 39916800.0, 39916800]
# # [13, 479001600.0, 479001600]
# # [14, 6227020800.0, 6227020800]
# # [15, 87178291200.0, 87178291200]
# # [16, 1307674368000.0, 1307674368000]
# # [17, 20922789888000.0, 20922789888000]
# # [18, 355687428096000.0, 355687428096000]
# # [19, 6.402373705728e+15, 6402373705728000]
# # [20, 1.21645100408832e+17, 121645100408832000]
# # [21, 2.43290200817664e+18, 2432902008176640000]
# # [22, 5.109094217170944e+19, 51090942171709440000]
# # [23, 1.1240007277776077e+21, 1124000727777607680000]
# # [24, 2.5852016738885062e+22, 25852016738884976640000]
# # [25, 6.204484017332391e+23, 620448401733239439360000]
# # [26, 1.5511210043330954e+25, 15511210043330985984000000]
#
def self.gamma: (Numeric x) -> Float
# Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with
# sides `x` and `y`.
#
# Math.hypot(3, 4) #=> 5.0
#
def self.hypot: (Numeric x, Numeric y) -> Float
# Returns the value of `fraction`*(2**`exponent`).
#
# fraction, exponent = Math.frexp(1234)
# Math.ldexp(fraction, exponent) #=> 1234.0
#
def self.ldexp: (Numeric fraction, Numeric exponent) -> Float
# Calculates the logarithmic gamma of `x` and the sign of gamma of `x`.
#
# Math.lgamma(x) is same as
# [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
#
# but avoid overflow by Math.gamma(x) for large x.
#
# Math.lgamma(0) #=> [Infinity, 1]
#
def self.lgamma: (Numeric x) -> [ Float, Integer ]
def self.log: (Numeric x, ?Numeric base) -> Float
# Returns the base 10 logarithm of `x`.
#
# Domain: (0, INFINITY)
#
# Codomain: (-INFINITY, INFINITY)
#
# Math.log10(1) #=> 0.0
# Math.log10(10) #=> 1.0
# Math.log10(10**100) #=> 100.0
#
def self.log10: (Numeric x) -> Float
# Returns the base 2 logarithm of `x`.
#
# Domain: (0, INFINITY)
#
# Codomain: (-INFINITY, INFINITY)
#
# Math.log2(1) #=> 0.0
# Math.log2(2) #=> 1.0
# Math.log2(32768) #=> 15.0
# Math.log2(65536) #=> 16.0
#
def self.log2: (Numeric x) -> Float
# Computes the sine of `x` (expressed in radians). Returns a Float in the range
# -1.0..1.0.
#
# Domain: (-INFINITY, INFINITY)
#
# Codomain: [-1, 1]
#
# Math.sin(Math::PI/2) #=> 1.0
#
def self.sin: (Numeric x) -> Float
# Computes the hyperbolic sine of `x` (expressed in radians).
#
# Domain: (-INFINITY, INFINITY)
#
# Codomain: (-INFINITY, INFINITY)
#
# Math.sinh(0) #=> 0.0
#
def self.sinh: (Numeric x) -> Float
# Returns the non-negative square root of `x`.
#
# Domain: [0, INFINITY)
#
# Codomain:[0, INFINITY)
#
# 0.upto(10) {|x|
# p [x, Math.sqrt(x), Math.sqrt(x)**2]
# }
# #=> [0, 0.0, 0.0]
# # [1, 1.0, 1.0]
# # [2, 1.4142135623731, 2.0]
# # [3, 1.73205080756888, 3.0]
# # [4, 2.0, 4.0]
# # [5, 2.23606797749979, 5.0]
# # [6, 2.44948974278318, 6.0]
# # [7, 2.64575131106459, 7.0]
# # [8, 2.82842712474619, 8.0]
# # [9, 3.0, 9.0]
# # [10, 3.16227766016838, 10.0]
#
# Note that the limited precision of floating point arithmetic might lead to
# surprising results:
#
# Math.sqrt(10**46).to_i #=> 99999999999999991611392 (!)
#
# See also BigDecimal#sqrt and Integer.sqrt.
#
def self.sqrt: (Numeric x) -> Float
# Computes the tangent of `x` (expressed in radians).
#
# Domain: (-INFINITY, INFINITY)
#
# Codomain: (-INFINITY, INFINITY)
#
# Math.tan(0) #=> 0.0
#
def self.tan: (Numeric x) -> Float
# Computes the hyperbolic tangent of `x` (expressed in radians).
#
# Domain: (-INFINITY, INFINITY)
#
# Codomain: (-1, 1)
#
# Math.tanh(0) #=> 0.0
#
def self.tanh: (Numeric x) -> Float
end
# Definition of the mathematical constant E for Euler's number (e) as a Float
# number.
#
#
Math::E: Float
# Definition of the mathematical constant PI as a Float number.
#
#
Math::PI: Float
# Raised when a mathematical function is evaluated outside of its domain of
# definition.
#
# For example, since `cos` returns values in the range -1..1, its inverse
# function `acos` is only defined on that interval:
#
# Math.acos(42)
#
# *produces:*
#
# Math::DomainError: Numerical argument is out of domain - "acos"
#
class Math::DomainError < StandardError
end
File Manager Version 1.0, Coded By Lucas
Email: hehe@yahoo.com